• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Xiaopan (Ma, Xiaopan.) | Li, Xiaojing (Li, Xiaojing.) | Guo, Dong (Guo, Dong.) | Cui, Lixin (Cui, Lixin.) | Jiang, Xuru (Jiang, Xuru.) | Chen, Xin (Chen, Xin.)

收录:

EI Scopus

摘要:

The application of traditional collaborative filtering algorithm on large-scale commercial websites is very mature. However, the data sparsity and extensibility problems that occur in the algorithm affect the recommendation accuracy of the algorithm. In order to solve this problem, a SOM clustering collaborative filtering algorithm based on singular value decomposition is proposed. Firstly, the original sparse matrix is reduced by the singular value decomposition, and the items are evaluated in the low-dimensional space, the prediction results are filled in the original matrix, which alleviates the problem of data sparseness. Then use SOM to cluster the users, which reduces the range of users searching for neighbors and improves the scalability of the algorithm. The experimental results on MovieLens-100k show that the algorithm can effectively improve the accuracy of the recommendation. © 2019 Association for Computing Machinery.

关键词:

Self organizing maps Singular value decomposition Conformal mapping Signal filtering and prediction Clustering algorithms Collaborative filtering

作者机构:

  • [ 1 ] [Ma, Xiaopan]Beijing Advanced Innovation Center for Future Network Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Xiaojing]State Grid Gansu Electric Power Company, Gansu, Beijing, China
  • [ 3 ] [Guo, Dong]Beijing Guotong Network Technology Co., Ltd., Beijing, China
  • [ 4 ] [Cui, Lixin]State Grid Gansu Electric Power Company, Gansu, Beijing, China
  • [ 5 ] [Jiang, Xuru]State Power Investment China Electric, Power Complete Equipment Co., Ltd., China
  • [ 6 ] [Chen, Xin]State Grid Gansu Electric Power Company, Gansu, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 61-65

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:557/3898069
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司