• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Yahan (Wang, Yahan.) | Wu, Chunhua (Wu, Chunhua.) | Zheng, Kangfeng (Zheng, Kangfeng.) | Wang, Xiujuan (Wang, Xiujuan.)

收录:

EI Scopus

摘要:

Social bots are intelligent programs that have the ability to receive instructions and mimic real users’ behaviors on social networks, which threaten social network users’ information security. Current researches focus on modeling classifiers from features of user profile and behaviors that could not effectively detect burgeoning social bots. This paper proposed to detect social bots on Twitter based on tweets similarity which including content similarity, tweet length similarity, punctuation usage similarity and stop words similarity. In addition, the LSA (Latent semantic analysis) model is adopted to calculate similarity degree of content. The results show that tweets similarity has significant effect on social bot detection and the proposed method can reach 98.09% precision rate on new data set, which outperforms Madhuri Dewangan’s method. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018.

关键词:

Behavioral research Botnet Economic and social effects Learning systems Network security Semantics

作者机构:

  • [ 1 ] [Wang, Yahan]Beijing University of Posts and Telecommunications, Beijing, China
  • [ 2 ] [Wu, Chunhua]Beijing University of Posts and Telecommunications, Beijing, China
  • [ 3 ] [Zheng, Kangfeng]Beijing University of Posts and Telecommunications, Beijing, China
  • [ 4 ] [Wang, Xiujuan]Beijing University of Technology, Beijing, China

通讯作者信息:

  • [wu, chunhua]beijing university of posts and telecommunications, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 1867-8211

年份: 2018

卷: 255

页码: 63-78

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1097/3643019
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司