• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Feng, Zeqi (Feng, Zeqi.) | Liu, Pengyu (Liu, Pengyu.) | Jia, Kebin (Jia, Kebin.) (学者:贾克斌) | Duan, Kun (Duan, Kun.)

收录:

EI Scopus

摘要:

Coding tree unit (CTU) partition technique provides excellent compression performance for HEVC at the expense of increased coding complexity. Therefore, a fast intra coding algorithm based CTU depth range prediction is proposed to reduce the complexity of HEVC intra coding herein. First, simple CTU s and complex CTU s are defined in line with their texture complexity, which are limited to different depth ranges. Then, the convolutional neural network architecture for HEVC intra depth range (HIDR-CNN) decision-making is proposed. It is used for CTU classification and depth range restriction. Last, the optimal CTU partition is achieved by recursive rate distortion (RD) cost calculation in the depth range. Experimental results show that the proposed algorithm can achieve average 27.54% encoding time reduction with negligible RD loss compared with HM 16.9. The proposed algorithm devotes to promote popularization of HEVC in realtime environments. © 2018 IEEE.

关键词:

Complex networks Convolutional neural networks Decision making Electric distortion Image coding Network architecture Signal distortion Textures

作者机构:

  • [ 1 ] [Feng, Zeqi]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Feng, Zeqi]Beijing Laboratory of Advanced Information Networks, Beijing; 100124, China
  • [ 3 ] [Feng, Zeqi]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Feng, Zeqi]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Liu, Pengyu]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Liu, Pengyu]Beijing Laboratory of Advanced Information Networks, Beijing; 100124, China
  • [ 7 ] [Liu, Pengyu]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 8 ] [Liu, Pengyu]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 9 ] [Jia, Kebin]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 10 ] [Jia, Kebin]Beijing Laboratory of Advanced Information Networks, Beijing; 100124, China
  • [ 11 ] [Jia, Kebin]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 12 ] [Jia, Kebin]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 13 ] [Duan, Kun]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 14 ] [Duan, Kun]Beijing Laboratory of Advanced Information Networks, Beijing; 100124, China
  • [ 15 ] [Duan, Kun]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 16 ] [Duan, Kun]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2018

页码: 551-555

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 15

归属院系:

在线人数/总访问数:172/3613405
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司