• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Yongping (Du, Yongping.) (学者:杜永萍) | Pei, Bingbing (Pei, Bingbing.) | Zhao, Xiaozheng (Zhao, Xiaozheng.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠)

收录:

EI Scopus

摘要:

Biomedical semantic question answering refers to answering questions from a given contextual passage in the biomedical field. The traditional methods need complicated feature engineering and the end-to-end neural network models depend on the large scale dataset. We propose a hierarchical multi-layer transfer learning model to address the question answering task on the biomedical data which lacks of sufficient training data. The domain adaptation techniques are adopted to reinforce the performance, include fine-tuning and forgetting cost regularization which penalize the deviations from the source model's parameters and avoid forgetting the knowledge of source domain. The distributed representation of the word is generated and domain knowledge of biomedical word embedding is integrated. Especially, the co-attention mechanism captures the question interaction clues for passage encoding. The open data set of 2017 BioASQ-Task 5B is used to evaluate the system performance. The results show that the domain adaptation techniques make the system get the state-of-the-art performance. Our model without any handcrafted feature achieves higher precision than the best solution for factoid question in 2017 BioASQ-Task 5B. © 2018 IEEE.

关键词:

Bioinformatics Large dataset Learning systems Long short-term memory Open Data Semantics Transfer learning

作者机构:

  • [ 1 ] [Du, Yongping]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Pei, Bingbing]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Zhao, Xiaozheng]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [Ji, Junzhong]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2018

页码: 362-367

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:146/3269473
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司