• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zou, Qian (Zou, Qian.) | Lin, Shaofu (Lin, Shaofu.) | Du, Yanan (Du, Yanan.)

收录:

EI Scopus

摘要:

In the visual tracking, correlation filtering (CF) based on tracking algorithms have shown favorable performance in recent years, and have the impressive performance on benchmark datasets. However, the tracking model has limited information about their context and can easily drift in cases of fast motion, occlusion or background clutter, and the trackers update tracking models at each frame without considering whether the detection is accurate or not. In this paper, we present an improved strategy that is adding more background context and changing the tracker model updating strategy. Experimental results show that the performance of the model has been improved effectively. © 2018 IEEE.

关键词:

Agricultural robots Benchmarking Intelligent robots Motion tracking Robotics

作者机构:

  • [ 1 ] [Zou, Qian]School of Software Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Lin, Shaofu]School of Software Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Du, Yanan]School of Software Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2018

页码: 252-256

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:174/3609015
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司