收录:
摘要:
Most real-word data can be modeled as heterogeneous information networks (HINs), which are composed of multiple types of nodes and links. Classification for objects in HINs is a fundamental problem with broad applications. However, traditional methods cannot involve in heterogeneous information networks. These approaches could not involve the relatedness between objects and various path semantics. In this paper, we proposed a novel framework called CHIN for classification. It utilizes the relevance measurement on objects to iteratively label objects in HINs. As different meta-path performs different accuracy for classification, the proposed framework incorporates the weights of meta-paths. As our experiments show, CHIN generates more accurate classes than the other classification algorithm, but also provides meaningful weights for meta-paths for classification task. © 2018, Springer Nature Switzerland AG.
关键词:
通讯作者信息:
电子邮件地址: