• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jinxia (Zhang, Jinxia.) | Chi, Yuanying (Chi, Yuanying.) (学者:迟远英) | Xiao, Linpeng (Xiao, Linpeng.)

收录:

EI Scopus

摘要:

Photovoltaic power generation is an effective way to use solar energy, which is a recognized ideal renewable energy source. However, photovoltaic that is susceptible to weather conditions is unstable, and will adversely affect the power grid. Therefore, it is necessary to improve the accuracy of solar power generation. This paper uses the LSTM model to predict solar power generation. At the same time, the data is reduced by using PCA to reduce the training duration of the model and improve the generalization ability of the model. Compared with other models, simulation experiment shows that the LSTM model is better. © 2018 IEEE.

关键词:

Deep learning Electric power transmission networks Long short-term memory Photovoltaic cells Principal component analysis Software engineering Solar energy Solar power generation

作者机构:

  • [ 1 ] [Zhang, Jinxia]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Chi, Yuanying]School of Economics and Management, Beijing University of Technology, Beijing, China
  • [ 3 ] [Xiao, Linpeng]Beijing Kedong Power Control System Co Ltd, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2327-0586

年份: 2018

卷: 2018-November

页码: 869-872

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 23

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:1326/3711283
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司