• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Juan, Bai (Juan, Bai.) | Yong, Li (Yong, Li.) | Jun, Yao (Jun, Yao.)

收录:

EI Scopus

摘要:

This paper tries to apply particle swarm optimization (pso) algorithm to improve the BP-neural network, and the second water source, three water, four water XAJ parameter calibration, the predicted results are compared. The results of different models of river basin water right choice. This paper mainly studies the BP neural network based on PSO algorithm of distributed four water xin an river model calculation, this paper did research work includes the following aspects: (1) based on the research of the common water level model, select the appropriate parameters, establish proper data model (2) based on the research of the common prediction algorithm, BP neural network as the main algorithm to parameter calibration, and apply the PSO algorithm to optimize the BP neural network. © 2018 ACM.

关键词:

Parameter estimation Deep learning Water levels Particle swarm optimization (PSO) Backpropagation Neural networks Water resources Calibration

作者机构:

  • [ 1 ] [Juan, Bai]School of Software Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Yong, Li]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Jun, Yao]Renmin University of China Library, Beijing; 100080, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2018

页码: 52-56

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:719/3902048
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司