• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Zhang, Dai (Zhang, Dai.) | Jian, Meng (Jian, Meng.) | Yang, Bowen (Yang, Bowen.) | Liu, Haiying (Liu, Haiying.)

收录:

CPCI-S EI Scopus

摘要:

Content curation social networks (CCSNs), where users share interests by images and their text descriptions, are booming social networks. For the purpose of fully utilizing user-generated contents to analysis user interests on CCSNs, we propose a framework of learning multimodal joint representations of pins for user interest analysis. First, images are automatically annotated with category distributions, which benefit from the network characteristics and represent interests of users. Further, image representations are extracted from an intermediate layer of a fine-tuned multilabel convolutional neural network (CNN) and text representations are obtained with a trained Word2Vec. Finally, a multimodal deep Boltzmann machine (DBM) are trained to fuse two modalities. Experiments on a dataset from Huaban demonstrate that using category distributions instead of single categories as labels to fine-tune CNN significantly improve the performance of image representation, and multimodal joint representations perform better than either of unimodal representations. © Springer Nature Switzerland AG 2018.

关键词:

Computer vision Convolutional neural networks Recommender systems Social networking (online) Knowledge representation Image enhancement Multilayer neural networks Modal analysis

作者机构:

  • [ 1 ] [Wu, Lifang]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhang, Dai]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Jian, Meng]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [Yang, Bowen]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 5 ] [Liu, Haiying]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

  • [jian, meng]faculty of information technology, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0302-9743

年份: 2018

卷: 11258 LNCS

页码: 363-374

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:221/3899925
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司