• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Dan (Liu, Dan.) | Duan, Jian-Min (Duan, Jian-Min.) (学者:段建民)

收录:

EI Scopus

摘要:

Intelligent vehicle plays an important role in intelligent transportation systems. Developing a high-performance SLAM algorithm can provide the key technology for intelligent vehicle achieving autonomous navigation in an unknown environment. In simple terms, SLAM problem includes two issues of state estimation and data association. Hence, a SLAM algorithm based on the square root central difference particle filter (SRCDPF) and per-particle ICNN-ML (individual compatibility nearest neighbor-maximum likelihood) data association method is proposed in this paper to solve the SLAM problem. In the proposed algorithm, the per-particle ICNN-ML data association method provides the key information for the state estimation. The state of each feature in the map is estimated by using central difference Kalman filter (CDKF). The square root central difference particle filter (SRCDPF) is used to compute the mean and covariance of the vehicle state. The simulations result in a large-scale environment which is designed to emulate a real campus scene and the experimental result with standard dataset have verified the feasibility and effectiveness of the proposed SLAM algorithm. © 2017 IEEE.

关键词:

State estimation Vehicles Kalman filters Intelligent systems Maximum likelihood estimation Intelligent vehicle highway systems Monte Carlo methods Machine learning Large dataset

作者机构:

  • [ 1 ] [Liu, Dan]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Duan, Jian-Min]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2018

页码: 1218-1223

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:772/3894778
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司