• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Zhang, Lei (Zhang, Lei.) | Jian, Meng (Jian, Meng.) | Zhang, Dai (Zhang, Dai.) | Liu, Haiying (Liu, Haiying.)

收录:

EI Scopus

摘要:

Recently, online social curation networks attract lots of users due to its convenience to retrieve, collect, sort and share multimedia content with each other. And high quality recommendation on social curation networks becomes urgent in current complex information environment. In this paper, we proposed a content-based bipartite graph algorithm for social curation network recommendation. Bipartite graph employs relationships between users and items to infer user-item association for recommendation. Beyond the traditional bipartite graph, we introduce the content of items into bipartite graph to extend the recommendation scope and improve its recommendation diversity simultaneously. Furthermore, content similarity is employed for recommendation reranking to improve visual quality of recommended images. Experimental results demonstrate that the proposed method enhance the recommendation ability of bipartite graph effectively in diversity and visual quality. © Springer Nature Singapore Pte Ltd. 2018.

关键词:

Social networking (online) Graph algorithms Graph theory Image enhancement

作者机构:

  • [ 1 ] [Wu, Lifang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhang, Lei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Jian, Meng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Zhang, Dai]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Liu, Haiying]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [jian, meng]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1865-0929

年份: 2018

卷: 819

页码: 339-348

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:641/3896755
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司