• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Guijuan (Zhang, Guijuan.) | Liu, Yang (Liu, Yang.) | Jin, Xiaoning (Jin, Xiaoning.)

收录:

EI Scopus

摘要:

Recommender systems play an important role in the age of mass information. They allow users to discover items that match their tastes. In this paper, we propose a novel method, called adversarial variational autoencoder, for top-N recommendation. We use generative adversarial networks to regularize variational autoencoder by imposing an arbitrary prior on the latent representation of VAE, which makes the recommendation model. We define a joint objective function as a minimization problem. Our experiments on three datasets show that the proposed model achieves high recommendation accuracy compared to other state-of-the-art models. © 2018 IEEE.

关键词:

Recommender systems Collaborative filtering Learning systems Software engineering

作者机构:

  • [ 1 ] [Zhang, Guijuan]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Liu, Yang]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Jin, Xiaoning]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2327-0586

年份: 2018

卷: 2018-November

页码: 853-856

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:436/3903799
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司