• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Boyang (Liu, Boyang.) (学者:刘波扬) | Gui, Zhiming (Gui, Zhiming.)

收录:

EI Scopus

摘要:

In RBF neural networks, the basis functions of hidden layers are often clustered by K-means algorithm. However, due to the K-means algorithm's dependence on the initial cluster center, it is too sensitive to noisy data. This paper proposes an RBF neural network based on K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset(KNN-DPC). First, the optimized KNN-DPC algorithm is used to cluster data with too many noisy points, then the basis function center of RBF neural network is obtained, finally, the RBF neural network is constructed. The accuracy of this algorithm is verified by simulation experiments, and the results show that the algorithm is effective and practical. © 2018 IEEE.

关键词:

Computer aided instruction Functions Information systems Information use K-means clustering Learning algorithms Multilayer neural networks Nearest neighbor search Radial basis function networks

作者机构:

  • [ 1 ] [Liu, Boyang]College of Computer Science, Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Gui, Zhiming]College of Computer Science, Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2018

页码: 108-111

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:205/3603424
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司