• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Yinyang (Liu, Yinyang.) | Xu, Xiaobin (Xu, Xiaobin.) | Li, Feixiang (Li, Feixiang.)

收录:

EI Scopus

摘要:

Image feature matching is an integral task for many computer vision applications such as object tracking, image retrieval, etc. The images can be matched no matter how the image changes owing into the geometric transformation (such as rotation and translation), illumination, etc. Also due to the successful application of the deep learning in image processing, the deep learning method has an advantage in feature extraction of images. In this paper, we adopt a deep Convolutional neural network (CNN) model, which attention on image patch, in image feature points matching. CNN obtains the feature by convolution kernel which parameters are achieved by learning. So it has strong ability to express feature. Compared with other methods, experimental results indicate the proposed method has higher accuracy and completed efficiently. © 2018 IEEE.

关键词:

Convolution Convolutional neural networks Deep learning Deep neural networks Image matching Image processing Image retrieval Learning systems Mathematical transformations Object tracking

作者机构:

  • [ 1 ] [Liu, Yinyang]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Xu, Xiaobin]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Li, Feixiang]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2018

页码: 1752-1756

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:788/3588898
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司