• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lu, Haipeng (Lu, Haipeng.) | Yang, Fan (Yang, Fan.)

收录:

EI Scopus

摘要:

Network traffic has apparent characteristic of burst. The time series of it presents nonlinear. It is difficult for traditional linear method to predict it accurately. To solve the problem, this paper proposes to decompose the original traffic to an approximation sequence and several detail sequences with the method of wavelet transformation. On this basis, the change trend of traffic is learned by LSTM network and the burst information is extracted at multiscale to complete the prediction of future traffic. The experimental results show that for the prediction error, the model constructed with LSTM network is superior to the models constructed with LSSVM, BP neural network and Elman neural network. In addition, the model proposed in this paper performs better than the ordinary LSTM network model for predicting the burst of traffic. © 2018 IEEE.

关键词:

Backpropagation Forecasting Long short-term memory Predictive analytics Software engineering Time series Traffic control Wavelet transforms

作者机构:

  • [ 1 ] [Lu, Haipeng]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Yang, Fan]State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2327-0586

年份: 2018

卷: 2018-November

页码: 1131-1134

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 33

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:198/3603361
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司