• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Che, Zhaohui (Che, Zhaohui.) | Zhai, Guangtao (Zhai, Guangtao.) | Liu, Jing (Liu, Jing.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Callet, Patrick Le (Callet, Patrick Le.) | Zhou, Jiantao (Zhou, Jiantao.) | Liu, Xianming (Liu, Xianming.)

收录:

EI Scopus

摘要:

Industrial two-dimensional (2D) matrix symbols are ubiquitous throughout the automatic assembly lines. Most industrial 2D symbols are corrupted by various inevitable artifacts. State-of-the-art decoding algorithms are not able to directly handle low-quality symbols irrespective of problematic artifacts. Degraded symbols require appropriate preprocessing methods, such as morphology filtering, median filtering, or sharpening filtering, according to specific distortion type. In this paper, we first establish a database including 3000 industrial 2D symbols which are degraded by 6 types of distortions. Second, we utilize a shallow convolutional neural network (CNN) to identify the distortion type and estimate the quality grade for 2D symbols. Finally, we recommend an appropriate preprocessing method for low-quality symbol according to its distortion type and quality grade. Experimental results indicate that the proposed method outperforms state-of-the-art methods in terms of PLCC, SRCC and RMSE. It also promotes decoding efficiency at the cost of low extra time spent. © 2018 IEEE.

关键词:

Image processing Decoding Median filters Convolutional neural networks Convolution

作者机构:

  • [ 1 ] [Che, Zhaohui]Institute of Image Commu. and Network Engin., Shanghai Jiao Tong University, China
  • [ 2 ] [Zhai, Guangtao]Institute of Image Commu. and Network Engin., Shanghai Jiao Tong University, China
  • [ 3 ] [Liu, Jing]Tianjin University, China
  • [ 4 ] [Gu, Ke]Beijing University of Technology, China
  • [ 5 ] [Callet, Patrick Le]Polytech Nantes, France
  • [ 6 ] [Zhou, Jiantao]University of Macau, China
  • [ 7 ] [Liu, Xianming]Harbin Institute of Technology, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1522-4880

年份: 2018

页码: 2481-2485

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:178/3918174
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司