• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jian, Meng (Jian, Meng.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Zhang, Xiangyin (Zhang, Xiangyin.) | He, Yonghao (He, Yonghao.)

收录:

EI Scopus

摘要:

Saliency estimation becomes a hot research topic due to its wide and successful application in almost all vision related problems. However, it is still far from satisfactory in saliency estimation techniques due to the complex visual content and various requirements. In this paper, we propose a manifold ranking based kernel propagation (MRKP) approach for visual saliency estimation. MRKP begins to work on background seeds for manifold ranking on four image boundaries individually and select representative salient seeds. Pairwise constraints of must-link and cannot-link are formed with the boundary background seeds and selected salient seeds. Then, pairwise constraints guided saliency seed kernel learning and saliency kernel propagation are sequentially conducted in MRKP to estimate visual saliency of images. Experimental results demonstrate that the proposed MRKP has a good ability of learning discriminative kernel structure for saliency estimation. © 2018 IEEE.

关键词:

Agricultural robots Visualization Robotics

作者机构:

  • [ 1 ] [Jian, Meng]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Wu, Lifang]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Zhang, Xiangyin]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [He, Yonghao]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2018

页码: 421-425

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:508/3889592
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司