• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Rehman, Sadaqat Ur (Rehman, Sadaqat Ur.) | Huang, Yongfeng (Huang, Yongfeng.) | Tu, Shanshan (Tu, Shanshan.) | Rehman, Obaid Ur (Rehman, Obaid Ur.)

收录:

EI Scopus

摘要:

Semantic concepts selection for model construction and data collection is an open research question. It is highly demanding to choose good multimedia concepts with small semantic gaps to facilitate the work of cross-media system developers. Since, this work is very scarce therefore; this paper contributes a new real-world web image dataset created by NGN Tsinghua Laboratory students for cross media search. Unlike previous datasets, such as Flicker30k, Wikipedia and NUS have high semantic gap, results in leading to inconsistency with real time applications. To overcome these drawbacks, the proposed Facebook5k dataset includes: (1) 5130 images crawled from Facebook through users feelings; (2) Images are categorized according to users feelings; (3) Facebook5k is independent of tags and language, rather than uses feelings for search. Based on the proposed dataset, we point out key features of social website images and identify some research problems on image annotation and retrieval. The benchmark results show the effectiveness of the proposed dataset to simplify and improve general image retrieval. © Springer Nature Switzerland AG 2018.

关键词:

Semantics Image retrieval Image enhancement Cloud computing

作者机构:

  • [ 1 ] [Rehman, Sadaqat Ur]Tsinghua National Laboratory for Information Science and Technology, Beijing, China
  • [ 2 ] [Huang, Yongfeng]Tsinghua National Laboratory for Information Science and Technology, Beijing, China
  • [ 3 ] [Tu, Shanshan]Beijing University of Technology, Beijing, China
  • [ 4 ] [Rehman, Obaid Ur]Sarhad University of Science and IT, Peshawar, Pakistan

通讯作者信息:

  • [tu, shanshan]beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0302-9743

年份: 2018

卷: 11063 LNCS

页码: 512-524

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:110/3918592
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司