• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Hao (Xu, Hao.) | Pei, Fujun (Pei, Fujun.) | Jiang, Ning (Jiang, Ning.)

收录:

EI Scopus

摘要:

In this paper, an in-motion initial alignment algorithm based on Lie group is proposed, which effectively solves the non-uniqueness of the unit-quaternion attitude description and the nonlinear problem when using unit-quaternion for state estimation. The algorithm divides the attitude matrix into three successive special orthogonal matrices according to the property of the rotation on Lie group description and the basic principle of inertial navigation, and isolates the angular velocity and linear velocity of the carrier under dynamic conditions. Based on the mapping relation between Lie group and Lie algebra and the optimal estimation principle, and the uncertainty of measurement noise in modeling is analyzed, an adaptive Lie group filter method is proposed to estimate the initial inertial matrix directly. It can be seen from the experimental results that compare with the unit quaternion algorithm proposed algorithm has improved the alignment accuracy and stability. This method is an excellent situation to the SINS initial alignment in-motion. © 2018 Technical Committee on Control Theory, Chinese Association of Automation.

关键词:

Adaptive filtering Air navigation Indium compounds Inertial navigation systems Lie groups Matrix algebra Navigation Uncertainty analysis

作者机构:

  • [ 1 ] [Xu, Hao]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 2 ] [Xu, Hao]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Pei, Fujun]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 4 ] [Pei, Fujun]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Jiang, Ning]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 6 ] [Jiang, Ning]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 1934-1768

年份: 2018

卷: 2018-July

页码: 4581-4586

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:207/3609217
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司