• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jiangeng (Li, Jiangeng.) | Shen, Jianing (Shen, Jianing.) | Li, Xiaoli (Li, Xiaoli.) (学者:李晓理)

收录:

EI Scopus

摘要:

At present, there are widespread air pollution problems in most parts of China, the accurate prediction of atmospheric pollutant concentration has become a hot issue for people to study. This paper proposes the NDFA-LSS VM model to predict the concentration of PM2.5. The hyper-parameter of Least Square Support Vector Machine (LS SVM) were optimized by using the New Dynamic Firefly Algorithm (NDFA) to establish a PM2.5 concentration prediction model NDFA-LSSVM. The air quality data of monitoring stations at Chaoyang Agricultural Exhibition Hall District was used as source data to compare the performance of the optimized model with LSSVM model and General Regression Neural Network (GRNN) model. The experimental results show that the NDFA-LSSVM model proposed in this paper effectively improves the prediction accuracy of PM2.5 concentration. © 2018 IEEE.

关键词:

Agricultural robots Air quality Exhibition buildings Forecasting Optimization Predictive analytics Support vector machines

作者机构:

  • [ 1 ] [Li, Jiangeng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Li, Jiangeng]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Shen, Jianing]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Shen, Jianing]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Li, Xiaoli]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Li, Xiaoli]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2018

页码: 3492-3497

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:222/3605111
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司