• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Xiuzhi (Li, Xiuzhi.) | Jiang, Kai (Jiang, Kai.) | Jia, Songmin (Jia, Songmin.) (学者:贾松敏) | Zhang, Xiangyin (Zhang, Xiangyin.) | Sun, Yanjun (Sun, Yanjun.)

收录:

EI Scopus

摘要:

The tracking object is one of the important research directions in the field of computer vision and plays an important role in intelligent video monitoring. In this paper, a visual tracking method based on deep learning object detection is proposed. There are many functions required in human object tracking tasks, including the drive of hight-definition panoramic camera, real-time video streaming protocol of RTSP, object detection based on deep convolution neural network, ROI selection of interest area, dynamic object tracking of KF, and online video distribution of human coordinates through SOCKET communication. © 2018 IEEE.

关键词:

Convolution Convolutional neural networks Deep learning Deep neural networks Neural networks Object detection Object recognition Object tracking

作者机构:

  • [ 1 ] [Li, Xiuzhi]Faculty of Information Technology, Beijing University of Technology, Beijing, China, China
  • [ 2 ] [Li, Xiuzhi]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, China
  • [ 3 ] [Jiang, Kai]Faculty of Information Technology, Beijing University of Technology, Beijing, China, China
  • [ 4 ] [Jiang, Kai]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, China
  • [ 5 ] [Jia, Songmin]Faculty of Information Technology, Beijing University of Technology, Beijing, China, China
  • [ 6 ] [Jia, Songmin]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, China
  • [ 7 ] [Zhang, Xiangyin]Faculty of Information Technology, Beijing University of Technology, Beijing, China, China
  • [ 8 ] [Zhang, Xiangyin]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, China
  • [ 9 ] [Sun, Yanjun]Faculty of Information Technology, Beijing University of Technology, Beijing, China, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2018

页码: 4061-4066

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:2625/3584109
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司