• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Jian (Tang, Jian.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Yu, Wen (Yu, Wen.)

收录:

EI Scopus

摘要:

In industrial process, data-driven soft measuring model based on easy-to-measure process variables can be used to inference and estimate difficulty-to-measure quality or quantity parameter effectively. Normally, there is strong collinearity among these input features. Moreover, only small-size useful input/output data pairs for modeling such difficulty-to-measure predicted parameters can be obtained. In this paper, a new selective ensemble (SEN) modeling approach based on variable importance of projection (VIP) index is proposed to address such data. The VIP values of different input features combined with prior knowledge is used to make feature selection. These selected features are used to construct soft measuring model based on 'Resample training sample' ensemble construction strategy and SEN kernel latent structure algorithm. Simulation results based on mechanical frequency and Near-infrared (NIR) spectral data show effectiveness of the proposed method. © 2018 IEEE.

关键词:

Infrared devices Feature extraction Genetic algorithms

作者机构:

  • [ 1 ] [Tang, Jian]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Qiao, Jun-Fei]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Yu, Wen]Departamento de Control Automatico, CINVESTAV-IPN, Av.IPN 2508, México D.F.; 07360, Mexico

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2018

页码: 99-104

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:688/3904077
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司