• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Luo, Aorong (Luo, Aorong.) | Li, Xiaoli (Li, Xiaoli.) (学者:李晓理) | Li, Yang (Li, Yang.) | Li, Jiangeng (Li, Jiangeng.)

收录:

EI Scopus

摘要:

In order to adapt to the characteristics of high nonlinear and time-varying for air pollutants concentration and improve the real-time prediction accuracy of air pollutants concentration, a forecasting model of air pollutants concentration based on accurate online support vector regression (AOSVR) algorithm is established in this paper. According to the hourly SO2 concentration and meteorological parameters from May 2014 to April 2015 in Wanliu Monitoring Station of Beijing in China, the data of 2 months are selected as experimental samples. At the same time, Pearson correlation coefficient method is used to select the exogenous inputs which have strong correlation with the output variable. The results show that the AOSVR algorithm can adjust the prediction model dynamically, and the prediction accuracy is higher than that of the conventional fixed support vector regression (SVR) model. © 2018 IEEE.

关键词:

作者机构:

  • [ 1 ] [Luo, Aorong]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Li, Xiaoli]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Li, Xiaoli]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 4 ] [Li, Yang]Communication University of China, Beijing; 100024, China
  • [ 5 ] [Li, Jiangeng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2018

页码: 6274-6279

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:134/3773553
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司