• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Zengzeng (He, Zengzeng.) | Ye, Xudong (Ye, Xudong.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus

摘要:

PM2.5, which severely affects human health, is one of the most important indices for air quality estimation. There have been limited studies on the simple, fast and cheap PM2.5 concentration prediction and thus this paper presents a model of PM2.5 prediction based on image contrast-sensitive features. Two types of features were extracted from the images and utilized to estimate the PM2.5 concentration. Then, we establish a recurrent fuzzy neural network model, the parameters of which are trained by using the gradient descent algorithm with an adaptive learning rate. Experiment results indicate that the recurrent neural network has better prediction performance than traditional radial basis function and fuzzy neural network. © 2018 Technical Committee on Control Theory, Chinese Association of Automation.

关键词:

Air quality Forecasting Fuzzy inference Fuzzy logic Fuzzy neural networks Gradient methods

作者机构:

  • [ 1 ] [He, Zengzeng]Beijing Key Laboratory of Computational Intelligence and Intelligent System, China
  • [ 2 ] [He, Zengzeng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Ye, Xudong]Huludao Power Supply Corporation, Liaoning Electric Power Co. Ltd, Huludao; 125000, China
  • [ 4 ] [Gu, Ke]Beijing Key Laboratory of Computational Intelligence and Intelligent System, China
  • [ 5 ] [Gu, Ke]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Qiao, Junfei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, China
  • [ 7 ] [Qiao, Junfei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1934-1768

年份: 2018

卷: 2018-July

页码: 4102-4106

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:117/3609566
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司