• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Shan (Zhang, Shan.) | Li, Xiaoli (Li, Xiaoli.) (学者:李晓理) | Li, Yang (Li, Yang.) | Mei, Jianxiang (Mei, Jianxiang.)

收录:

EI Scopus

摘要:

The main objective of this study is to determine the more appropriate computational intelligence (CI) model for the prediction of air pollutants in urban areas. In this paper, in order to emphasize the importance of short-term air quality (AQ) prediction, PM2.5 is used as an example to evaluate the concentration of pollutants using a variety of CI methods and tools. According to the data of air quality monitoring stations, the main air pollutants O3, CO, NO2, SO2, PM10, PM2.5 and two kinds of meteorological factors temperature and humidity are selected as influencing factors. Comparing with the model of extreme learning machine (ELM), fuzzy neural network (FNN) and least squares support vector machine (LSSVM), wavelet Neural Network (WNN) model is constructed for short time prediction concentration of PM2.5. The experimental results show that the detection results based on WNN are more accurate, higher precision and strong self - learning ability. © 2018 IEEE.

关键词:

作者机构:

  • [ 1 ] [Zhang, Shan]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Li, Xiaoli]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Li, Xiaoli]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 4 ] [Li, Yang]Communication University of China, Beijing; 100024, China
  • [ 5 ] [Mei, Jianxiang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 李晓理

    [li, xiaoli]faculty of information technology, beijing university of technology, beijing; 100124, china;;[li, xiaoli]beijing key laboratory of computational intelligence and intelligent system, engineering research center of digital community, ministry of education, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2018

页码: 5514-5519

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 19

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:207/3911557
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司