• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Mingai (Li, Mingai.) (学者:李明爱) | Zhu, Wei (Zhu, Wei.) | Zhang, Meng (Zhang, Meng.) | Sun, Yanjun (Sun, Yanjun.) | Wang, Zhe (Wang, Zhe.)

收录:

EI Scopus

摘要:

In order to adaptively extract the subject-based time-frequency features of motor imagery EEG (MI-EEG) and make full use of the sequential information hidden in MI-EEG features, a Long Short-Term Memory (LSTM) based Recurrent Neural Network (RNN) is integrated with Optimal Wavelet Packet Transform (OWPT) to yield a novel recognition method, denoted as OWLR. Firstly, OWPT is applied to each channel of MI-EEG, and the improved distance criterion is used to find the optimal wavelet packet subspaces, whose coefficients are further selected as the time-frequency features of MI-EEG. Finally, a LSTM based RNN is used for classifying MI-EEG features. Experiments are conducted on a publicly available dataset, and the 5-fold cross validation experimental results show that OWLR yields relatively higher classification accuracies compared to the existing approaches. This is helpful for the future research and application of RNN in processing of MI-EEG. © 2017 IEEE.

关键词:

Classification (of information) Electroencephalography Long short-term memory Packet networks Recurrent neural networks Wavelet analysis Wavelet transforms

作者机构:

  • [ 1 ] [Li, Mingai]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhu, Wei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Zhang, Meng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Sun, Yanjun]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Wang, Zhe]College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

页码: 584-589

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:136/3603625
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司