• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yu, Jianjun (Yu, Jianjun.) | Wu, Pengshen (Wu, Pengshen.) | Yu, Naigong (Yu, Naigong.) (学者:于乃功) | Zuo, Guoyu (Zuo, Guoyu.) (学者:左国玉) | Zhang, Yuan (Zhang, Yuan.)

收录:

EI Scopus

摘要:

In order to simplify the complex motion planning and improve the intelligence of robot arm, a robot arm task imitation system based on RNN (Recurrent Neural Network) is proposed. Firstly, the original task is demonstrated to robot arm, and the original data is collected which includes original task trajectory data and robot arm joint angle data. Secondly, RNN is constructed and used to obtain imitation policy by training original data. Thirdly, when task changes, new data is collected which only include new task trajectory data, and robot arm joint angle data is obtained by imitation policy generalization of new data. The experimental results show that the imitation system not only can simplify complex motion planning and reproduce demonstration of original task, but also can realize new task imitation by policy generalization when task changes. © 2017 IEEE.

关键词:

Agricultural robots Biomimetics Complex networks Intelligent robots Motion planning Recurrent neural networks Robotic arms Robotics Robot programming

作者机构:

  • [ 1 ] [Yu, Jianjun]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Wu, Pengshen]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Yu, Naigong]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [Zuo, Guoyu]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 5 ] [Zhang, Yuan]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

  • [yu, jianjun]faculty of information technology, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

卷: 2018-January

页码: 2484-2489

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:83/3602166
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司