• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Yongping (Du, Yongping.) (学者:杜永萍) | Pan, Yunpeng (Pan, Yunpeng.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠)

收录:

EI Scopus

摘要:

Biomedical semantic indexing refers to annotating biomedical citations with Medical Subject Headings, which is crucial for texting mining, information retrieval and other researches in the field of bioinformatics. The traditional methods ignore the relations among labels and need complicated feature engineering. In this paper, we present a novel model with a deep serial multi-task learning structure, in which the semantic word embedding and bidirectional Gated Recurrent Unit are integrated in a multi-task learning paradigm. It differs from an ordinary multi-task structure in that the tasks in our model are serial and tightly coupled rather than parallel. The dataset of the 2017 BioASQ-Task5A is used to evaluate the performance. Without any handcrafted feature, our model outperforms MTI, the state-of-the-art solution proposed by the US National Library of Medicine. It also achieves the highest precision among all the solutions in 2017 BioASQ-Task5A, and converges faster than some naive deep learning methods. © 2017 IEEE.

关键词:

Indexing (of information) Multi-task learning Semantics Text mining Classification (of information) Bioinformatics Deep learning Learning systems

作者机构:

  • [ 1 ] [Du, Yongping]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Pan, Yunpeng]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Ji, Junzhong]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

卷: 2017-January

页码: 533-537

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:265/3772254
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司