• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hou, Ying (Hou, Ying.) | Yang, Cuili (Yang, Cuili.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Han, Honggui (Han, Honggui.) (学者:韩红桂)

收录:

EI Scopus

摘要:

In this paper, an adaptive multi-objective differential evolution algorithm based on evolutionary process information, named AMODE-EPI, is proposed to improve the searching performance. In AMODE-EPI, the process information is used to describe the schedule of evolution. Meanwhile, the parameters, including scaling factor, crossover rate and population size, are adjusted dynamically based on EPI. Then, this proposed AMODE-EPI can balance the local search and the global exploration abilities. Finally, the performance of AMODE-EPI is validated and compared with other state-of-the-art multi-objective evolutionary algorithms on a number of benchmark problems. The experimental results show that the AMODE-EPI has better convergence and diversity than the other algorithms. © 2017 IEEE.

关键词:

Multiobjective optimization Population statistics Benchmarking Evolutionary algorithms

作者机构:

  • [ 1 ] [Hou, Ying]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Yang, Cuili]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Qiao, Junfei]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [Han, Honggui]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

卷: 2018-January

页码: 383-388

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:364/3906380
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司