• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Yunzhu (Wang, Yunzhu.) | Chen, Yunli (Chen, Yunli.)

收录:

EI Scopus

摘要:

This paper introduced an improved-LDA to overcome the drawbacks existing in traditional linear discriminant analysis method. It redefined the characteristic matrix by adding a weight vector which is determined by the posterior classification rate of each feature. Therefore it can discriminate different classes of samples in the projection space more effectively than traditional methods. The numerical experiments based on UCI data sets show that this method can reduce the within-class scatter and increase the recognition accuracy rate of the support vector machine. © 2017 IEEE.

关键词:

Agricultural robots Discriminant analysis Numerical methods Principal component analysis Robotics Support vector machines

作者机构:

  • [ 1 ] [Wang, Yunzhu]Technology Department of Information, Beijing University of Technology, Beijing, China
  • [ 2 ] [Chen, Yunli]Technology Department of Information, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

页码: 414-417

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:150/3603152
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司