• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Kong, Yonghui (Kong, Yonghui.) | Yan, Jianzhuo (Yan, Jianzhuo.) | Xu, Hongxia (Xu, Hongxia.)

收录:

EI Scopus

摘要:

In recent years, with the development of computer technology, EEG emotion recognition has been paid much attention in the field of emotional computing and has become a hotspot. In the practical application of EEG emotion recognition, it is not only required to ensure the accuracy rate, but also the operation efficiency. Based on this, we propose a ReGA algorithm to select the EEG characteristics. In the ReGA algorithm, the ReliefF algorithm is used to calculate the feature weight, and the heuristic information is provided for the population initialization of the encapsulation stage genetic algorithm, so that the initial population contains a good starting point, so the genetic algorithm can adopt less evolution Algebra and small-scale populations to find a better subset of features. Therefore, the ReGA algorithm can avoid the danger of ReliefF to remove important features, but also reduce the probability of genetic algorithm to adapt and improve the efficiency of computing. © 2017 IEEE.

关键词:

Biomedical signal processing Efficiency Electroencephalography Genetic algorithms Scales (weighing instruments) Speech recognition

作者机构:

  • [ 1 ] [Kong, Yonghui]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Yan, Jianzhuo]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Xu, Hongxia]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

  • [kong, yonghui]faculty of information technology, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

卷: 2017-January

页码: 6588-6593

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:910/3617976
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司