• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xia, Wei (Xia, Wei.) | Yao, Ming Hui (Yao, Ming Hui.) (学者:姚明辉) | Zhang, Wei (Zhang, Wei.)

收录:

EI Scopus

摘要:

This paper investigates the complicated dynamic behavior and power generation efficiency of the cantilevered laminated composite piezoelectric beam with the unilateral layer separate. The effect of the external excitation on the voltage output, the impacts of the layered length of composite layers and the influence of the magnetic distance on the voltage output and the effective frequency bandwidth are examined. Simultaneously, the output voltage and the effective frequency bandwidth of the traditional cantilevered laminated composite piezoelectric beam are measured experimentally to verify the developed model. The amplitude of the harmonic excitation is given the certain value and is not changed. Experimental results show that the developed structure has lower natural frequency, great voltage output and great effective frequency bandwidth when the length of the separate parts between composite layers is in the range. For the different layered lengths of the developed bistable piezoelectric beam, there exist the optimal magnetic distance and an optimal layered length, respectively. The power generation efficiency of the developed bistable piezoelectric beam is better than that of the developed monostable piezoelectric beam. When the layered length of the separate parts between composite layers is optimal, the voltage output of the piezoelectric beam has four peak voltages. In addition, the power generation efficiency of the developed structure are superior to that of the traditional one. The maximum peak voltage of this structure is 6.73 times than that of the traditional piezoelectric beam, and its effective frequency bandwidth promotes 8.4 times. Copyright © 2017 ASME.

关键词:

Bandwidth Energy harvesting Intelligent materials Intelligent systems Laminated composites Laminating Piezoelectricity

作者机构:

  • [ 1 ] [Xia, Wei]College of Mechanical Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Yao, Ming Hui]College of Mechanical Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Zhang, Wei]College of Mechanical Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

卷: 1

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:390/3652482
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司