• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao, Xurong (Gao, Xurong.) | Cai, Yiheng (Cai, Yiheng.) | Qiu, Changyan (Qiu, Changyan.) | Cui, Yize (Cui, Yize.)

收录:

EI Scopus

摘要:

The automatic segmentation of retinal vessels plays an important role in the early screening of eye diseases. However, pathological retinal images are difficult for us to segment the vessels. In this paper, we regard the vessels segmentation task as a multi-label problem and combine the preprocessed method Gaussian matched filter with a new U-shaped fully convolutional neural network called U-net to generate a blood vessels segmentation framework. The output of this model can distinguish the vessels from background although in the inadequate contrast regions and pathological regions. The proposed method is tested on a publicly available dataset of DRIVE. Sensitivity, Specificity, Accuracy and Precision are used to evaluate our method, and the average classification accuracy is 0.9636 on the dataset of DRIVE. Performance results show that our method outperforms the state-of-the-art method for automatic retinal blood segmentation. © 2017 IEEE.

关键词:

Biomedical engineering Blood Blood vessels Classification (of information) Convolutional neural networks Diagnosis Eye protection Gaussian distribution Image segmentation Matched filters Ophthalmology

作者机构:

  • [ 1 ] [Gao, Xurong]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Cai, Yiheng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Qiu, Changyan]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Cui, Yize]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

卷: 2018-January

页码: 1-5

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 34

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:649/3562318
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司