• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zuo, Guoyu (Zuo, Guoyu.) (学者:左国玉) | Du, Tingting (Du, Tingting.) | Lu, Jiahao (Lu, Jiahao.)

收录:

EI Scopus

摘要:

This paper proposes an object detection strategy with a deep reinforcement learning method Double DQN in which, given an image window, a deep reinforcement learning agent is trained to determine which predefined region candidates to focus the attention on. In the Double DQN framework, the first DQN is used to select an action to search the target region and the second is to evaluate the selected action. In order to verify the efficiency of our method, we compare the performance of Double DQN with the traditional DQN. Experiments indicate Double DQN has good results with higher precision and recall. The number of actions performed by the Double DQN agent are analyzed and the results show that the object can be found within very few steps. We also conducted an experiment on person detection, the results show that the algorithm has strong adaptive ability. © 2017 IEEE.

关键词:

Reinforcement learning Object recognition Object detection Deep learning Learning systems

作者机构:

  • [ 1 ] [Zuo, Guoyu]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Du, Tingting]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Lu, Jiahao]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

卷: 2017-January

页码: 6727-6732

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:353/3897847
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司