• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | He, Jiaoyu (He, Jiaoyu.) | Jian, Meng (Jian, Meng.) | Zhang, Jianan (Zhang, Jianan.) | Zou, Yunzhen (Zou, Yunzhen.)

收录:

EI Scopus

摘要:

Due to the various noises, the cloud image segmentation becomes a big challenge for atmosphere prediction. CNN is capable of learning discriminative features from complex data, but this may be quite time-consuming in pixel-level segmentation problems. In this paper we propose superpixel analysis based CNN (SP-CNN) for high efficient cloud image segmentation. SP-CNN employs image over-segmentation of superpixels as basic entities to preserve local consistency. SP-CNN takes the image patches centered at representative pixels in every superpixel as input, and all superpixels are classified as cloud or non-cloud part by voting of the representative pixels. It greatly reduces the computational burden on CNN learning. In order to avoid the ambiguity from superpixel boundaries, SP-CNN selects the representative pixels uniformly from the eroded superpixels. Experimental analysis demonstrates that SP-CNN guarantees both the effectiveness and efficiency in cloud segmentation. © 2017 IEEE.

关键词:

Superpixels Image segmentation Convolution Convolutional neural networks Image analysis

作者机构:

  • [ 1 ] [Wu, Lifang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [He, Jiaoyu]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Jian, Meng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Zhang, Jianan]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Zou, Yunzhen]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [jian, meng]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 2157-8672

年份: 2017

卷: 0

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:264/3897751
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司