• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuncheng, Li (Yuncheng, Li.) | Jie, Shao (Jie, Shao.)

收录:

EI Scopus

摘要:

This paper introduces the basic Rapidly-Exploring Random Tree (RRT) and its basic modification Rapidly-Exploring Random Tree star (RRT∗), which is not only the extension of RRT, but also a widely applied algorithm because of the properties of asymptotically optimal path regardless of any obstacles, whereas the limitation to achieve optimal path has a slow convergence rate. As a result, it costs too much memory and time due to a large number of iterations, so we propose a method that should change the sampling scheme from random distribution sampling to Gaussian distribution sampling to overcome this limitation. In order to apply the improved algorithm in robot arms or manipulators motion planning, we extend the RRT∗ to simulate in higher dimensional spaces, the planner is implemented in 3D workspace. Finally we also revise the Gaussian distribution to suit the practical environment. © 2017 IEEE.

关键词:

Agricultural robots Gaussian distribution Manipulators Motion planning Robotics Robot programming Robots Trees (mathematics)

作者机构:

  • [ 1 ] [Yuncheng, Li]Beijing Key Lab of Computational Intelligence and Intelligent System, Beijing University of Technology, BJUT, China
  • [ 2 ] [Jie, Shao]Beijing Key Lab of Computational Intelligence and Intelligent System, Beijing University of Technology, BJUT, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

页码: 22-26

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:75/3602126
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司