• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Mai, Shijie (Mai, Shijie.) | Yang, Cuili (Yang, Cuili.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus

摘要:

In order to overcome the defects of gradient descent (GD) algorithm which lead to slow convergence and easy to fall into local minima, this paper proposes an adaptive optimum steepest descent (AOSD) learning algorithm which is used for the recurrent radial basis function (RRBF) neural network. Compared with traditional GD algorithm, the adaptive learning rate is integrated into the AOSD learning algorithm in order to accelerate the convergence speed of training algorithm and improve the network performance of nonlinear system modeling. Several comparisons show that the proposed RRBF has faster convergence speed and better prediction performance. © 2017 Technical Committee on Control Theory, CAA.

关键词:

作者机构:

  • [ 1 ] [Mai, Shijie]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Mai, Shijie]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Yang, Cuili]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Yang, Cuili]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Qiao, Junfei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Qiao, Junfei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1934-1768

年份: 2017

页码: 3942-3947

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:94/3909034
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司