• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Lei (Ma, Lei.) | Xu, Changfu (Xu, Changfu.) | Zuo, Guoyu (Zuo, Guoyu.) (学者:左国玉) | Bo, Bin (Bo, Bin.) | Tao, Fengbo (Tao, Fengbo.)

收录:

EI Scopus

摘要:

Insulators are the most common equipment in the power system, the failure of insulators will cause heavy economic loss to electric power companies, so it is very important to detect insulators effectively for inspecting their working states. This paper proposes a novel method to detect the insulators based on Faster R-CNN in which Region Proposal Network (RPN) is used to generate high-quality insulator candidates and the convolution features are shared with Fast R-CNN to detect the insulator. A large number of visible light images are used as experimental data in experiment, and the results show that this method can detect insulators in complex background with high precision as well as low time cost. © 2017 IEEE.

关键词:

Electric losses Electric utilities Intelligent systems Losses Electric power system economics Light Convolutional neural networks Deep learning

作者机构:

  • [ 1 ] [Ma, Lei]Faculty of Information Technology, Beijing University of Technology, Beijing; 1000124, China
  • [ 2 ] [Xu, Changfu]State Grid Jiangsu Electric Power Company Research Institute, Nanjing; 211103, China
  • [ 3 ] [Zuo, Guoyu]Faculty of Information Technology, Beijing University of Technology, Beijing; 1000124, China
  • [ 4 ] [Bo, Bin]State Grid Jiangsu Electric Power Company Research Institute, Nanjing; 211103, China
  • [ 5 ] [Tao, Fengbo]State Grid Jiangsu Electric Power Company Research Institute, Nanjing; 211103, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2017

页码: 1410-1414

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:444/4968684
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司