• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Jundai (Sun, Jundai.) | Jia, Maoshen (Jia, Maoshen.) | Bao, Changchun (Bao, Changchun.) (学者:鲍长春) | Song, Boxuan (Song, Boxuan.)

收录:

EI Scopus

摘要:

This paper proposes a multiple audio source separation method by using the intra-object-sparsity (in each frame, the energy of an audio signal concentrates on small number of time-frequency instants) encoding framework. Specifically, by applying the intra-object-sparsity of audio signal, each source is encoded to obtain a sparse representation of it while preserves the major energy of the original signal. Since, most of the multiple source separation algorithms for speech sources can be extended to the audio sources. The combination of the intra-object-sparsity encoding framework and source separation method can effectively eliminate the cocktail party problem which lead to bad separation quality. The evaluations reveal that the proposed method achieves a higher separation quality compared with the existing techniques and robust over different types of audio signals. © 2017 IEEE.

关键词:

Signal encoding Source separation Separation Encoding (symbols)

作者机构:

  • [ 1 ] [Sun, Jundai]Speech and Audio Signal Processing Lab, School of Information and Communication Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Jia, Maoshen]Speech and Audio Signal Processing Lab, School of Information and Communication Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Bao, Changchun]Speech and Audio Signal Processing Lab, School of Information and Communication Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [Song, Boxuan]Speech and Audio Signal Processing Lab, School of Information and Communication Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

卷: 2017-January

页码: 1-5

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1804/4266198
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司