• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Shanshe (Wang, Shanshe.) | Wang, Shiqi (Wang, Shiqi.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Guo, Xiaoqiang (Guo, Xiaoqiang.) | Ma, Siwei (Ma, Siwei.) | Gao, Wen (Gao, Wen.)

收录:

EI Scopus

摘要:

In this paper, we propose a novel reduced-reference (RR) image quality assessment (IQA) algorithm based on the internal generative mechanism, which suggests that the human visual system (HVS) can actively predict the primary visual information and avoid the uncertainty. Specifically, the explanation of the visual scene is formulated as the process of sparse representation. In particular, the entropy of primitive accounts for the primary visual information and the discrepancy between the image signal and its best sparse description is regarded as the uncertainty in perception. As such, the combined feature that can summarize the primary visual information and uncertainty in sparse domain is required to be transmitted in the RR-IQA framework. Comparative studies of the proposed reduced reference metric is conduced on both single and multiple distortion databases, and experimental results demonstrate that the proposed metric can achieve high correlation with the human perception by only sending ignorable additional information. © 2017 IEEE.

关键词:

Image quality Visual communication Entropy

作者机构:

  • [ 1 ] [Wang, Shanshe]Institute of Digital Media, Peking University, Beijing, China
  • [ 2 ] [Wang, Shiqi]Department of Computer Science, City University of Hong Kong, Hong Kong
  • [ 3 ] [Gu, Ke]Beijing University of Technology, Beijing, China
  • [ 4 ] [Guo, Xiaoqiang]Academy of Broadcasting Science, SAPPRFT, Beijing, China
  • [ 5 ] [Ma, Siwei]Institute of Digital Media, Peking University, Beijing, China
  • [ 6 ] [Gao, Wen]Institute of Digital Media, Peking University, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

卷: 2018-January

页码: 1-4

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:519/3903102
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司