• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Y. (Zhao, Y..) (学者:赵艳) | Xiao, J. (Xiao, J..) | Chen, S.J. (Chen, S.J..) (学者:陈树君)

收录:

EI Scopus

摘要:

This paper presents an investigation on the microstructure and mechanical property of Al-alloy parts made by using additive manufacturing based on CMT (Cold Metal Transfer) welding technology. With the same 3D model and process parameters, a set of hollow cylindrical parts with 100 layers were built up using 2319, 4043, 5356 aluminum welding wires, respectively. Then their microstructure, tensile strength, and microhardness were tested and analyzed comparatively. The layer bands characteristics were obviously observed in both 2319 and 4043 parts. In the interlayer region of the 2319 parts, the segregation of alloying elements on the grain boundaries and inside the grains were significantly more than that in the fusion line region. For the microstructure of 4043 parts, the dendrites grow upward from the bottom without interruption in the fusion line region, and the continuous growth structure was maintained. There is no obviously change on the microhardness from the bottom to the top because the organization is uniform and there is no significant difference in the grain size. The ultimate strength and elongation in the horizontal direction were higher than those in the longitudinal direction, and the 5356 parts had best mechanical properties among the three materials. Ultrasonic method was also used to measure the Young's modulus of the additive manufactured parts. The Young's modulus measuring results were accordant with the results obtained by the mechanical property testing, and the error was within 3%. © 2017 Trans Tech Publications, Switzerland.

关键词:

3D modeling 3D printers Additives Alloying elements Aluminum alloys Elastic moduli Grain boundaries Mechanical properties Microhardness Microstructure Tensile strength Welding

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 0255-5476

年份: 2017

卷: 898 MSF

页码: 1318-1324

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:242/2894008
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司