• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dai, Tao (Dai, Tao.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Xu, Zhi-Ya (Xu, Zhi-Ya.) | Tang, Qingtao (Tang, Qingtao.) | Liang, Haoyi (Liang, Haoyi.) | Zhang, Yong-Bing (Zhang, Yong-Bing.) | Xia, Shu-Tao (Xia, Shu-Tao.)

收录:

EI Scopus

摘要:

It is known that images available usually undergo some stages of processing (e.g., acquisition, compression, transmission and display), and each stage may introduce certain type of distortion. Hence, images distorted by multiple types of distortions are common in real applications. Research in human visual perception has evidenced that the human visual system (HVS) is sensitive to image structural information. This fact inspires us to design a new blind/no-reference (NR) image quality assessment (IQA) method to evaluate the visual quality of multiply-distorted images based on structural degradation. Specifically, quality-aware features are extracted from both the first- and high-order image structures by local binary pattern (LBP) operators. Experimental results on two well-known multiply-distorted image databases demonstrate the outstanding performance of the proposed method. © 2017 IEEE.

关键词:

Image quality

作者机构:

  • [ 1 ] [Dai, Tao]Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China
  • [ 2 ] [Gu, Ke]Faculty of Information Technology, Beijing University of Technology, 100124, China
  • [ 3 ] [Xu, Zhi-Ya]Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China
  • [ 4 ] [Tang, Qingtao]Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China
  • [ 5 ] [Liang, Haoyi]University of Virginia, Department of ECE, Charlottesville; VA; 22904, United States
  • [ 6 ] [Zhang, Yong-Bing]Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China
  • [ 7 ] [Xia, Shu-Tao]Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1522-4880

年份: 2017

卷: 2017-September

页码: 171-175

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:1283/3890487
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司