• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Yongzhi (Tang, Yongzhi.) | Liu, Zhongliang (Liu, Zhongliang.) (学者:刘中良) | Li, Yanxia (Li, Yanxia.) | Shi, Can (Shi, Can.) | Lv, Chen (Lv, Chen.)

收录:

EI Scopus SCIE

摘要:

Steam ejector as an energy-saving unit is of critical importance to the overall performance of MED-TVC desalination system. In this study, a combined pressure regulation solution is proposed to dredge the blocked entrained flow and alleviate the high-pressure effect simultaneously for multiple optimization of the entrainment passage flow field. The systematic analysis and investigation mainly concentrate on the feasibility verifications of the combined pressure regulations, and the performance comparisons between the combined and single pressure regulation schemes under various operating conditions. The results reveal that the throat-combined pressure regulation would simply lose efficacy, the diffuser- and multi-combined pressure regulations could achieve a similar multiple optimization that the alleviation effectiveness remains almost steady and the dredging effectiveness enhances continually as the back pressure decreases. Moreover, there is an optimum combination among the pressure regulation schemes, by which a most significant entrainment ratio improvement could be achieved, as high as 28.75% in the present simulations covered range. To be specific, TMCE pressure regulation could be selected if the ejector operates under the design condition, and for the off-design conditions, multi-combined pressure regulation should be adopted if the back pressure not exceeds its critical value, otherwise, CMCE pressure regulation is the best choice. (C) 2019 Elsevier Ltd. All rights reserved.

关键词:

Entrainment passage Multiple optimization Performance improvement Combined pressure regulation Steam ejector

作者机构:

  • [ 1 ] [Tang, Yongzhi]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Zhongliang]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Yanxia]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 4 ] [Shi, Can]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 5 ] [Lv, Chen]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, 100 Pingleyuan, Beijing 100124, Peoples R China

通讯作者信息:

  • 刘中良

    [Liu, Zhongliang]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, 100 Pingleyuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENERGY

ISSN: 0360-5442

年份: 2019

卷: 175

页码: 46-57

9 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:1

被引次数:

WoS核心集被引频次: 32

SCOPUS被引频次: 33

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:445/5063779
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司