收录:
摘要:
The paper presents a novel artificial bee colony clustering (ABCC) algorithm with a self-adaptive multidimensional search mechanism based on difference bias for insula functional parcellation, called as DABCC. In the new algorithm, the preprocessed functional magnetic resonance imaging (fMRI) data was mapped into a low-dimension space by spectral mapping to reduce its dimension in the initialization. Then, clustering centers in the space were searched by the search procedure composed of employed bee search, onlooker bee search and scout bee search, where a self-adaptive multidimensional search mechanism based on difference bias for employed bee search was developed to improve search capability of ABCC. Finally, the experiments on fMRI data demonstrate that DABCC not only has stronger search ability, but can produce better parcellation structures in terms of functional consistency and regional continuity. © 2017, Springer International Publishing AG.
关键词:
通讯作者信息:
电子邮件地址: