• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Zhou (Yang, Zhou.) | Jian, Meng (Jian, Meng.) | Bao, Bingkun (Bao, Bingkun.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳)

收录:

EI Scopus

摘要:

The powerful image feature extraction ability of convolutional neural network makes it possible to achieve great success in the field of face recognition. However, this category of models tend to be deep and paralleled which is not capable to be applied in real-time face recognition tasks. In order to improve its feasibility, we propose a max-feature-map activation based fully convolutional structure to extract face features with higher speed and less computational cost. The learned model has a great potential on embedding in the hardware devices due to its high recognition performance and small storage space. Experimental results demonstrate that the proposed model is 63 times smaller in comparison with the famous VGG model. At the same time, 96.80% verification accuracy is achieved for a single network on LFW benchmark. © 2017, Springer International Publishing AG.

关键词:

Feature extraction Convolution Convolutional neural networks Embeddings Face recognition Extraction Biometrics

作者机构:

  • [ 1 ] [Yang, Zhou]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Jian, Meng]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Bao, Bingkun]Nanjing Jingjunhai Network Ltd., Nanjing; Jiangsu, China
  • [ 4 ] [Bao, Bingkun]National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
  • [ 5 ] [Wu, Lifang]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

  • [bao, bingkun]nanjing jingjunhai network ltd., nanjing; jiangsu, china;;[bao, bingkun]national laboratory of pattern recognition, institute of automation, chinese academy of sciences, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0302-9743

年份: 2017

卷: 10568 LNCS

页码: 58-65

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:893/3891536
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司