• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gongming, Wang (Gongming, Wang.) | Wenjing, Li (Wenjing, Li.) | Junfei, Qiao (Junfei, Qiao.) (学者:乔俊飞) | Guandi, Wu (Guandi, Wu.)

收录:

EI Scopus

摘要:

Deep learning has been successfully applied into pattern recognition due to its deep architecture and effective unsupervised learning, and deep belief network (DBN) is a popular model based on deep learning technique. In this paper, a DBN identification model based on partial least square regression (PLSR), named PLSR-DBN, is proposed for nonlinear system identification. In order to improve the identification accuracy, PLSR is introduced into the supervised fine-tuning of DBN to elimate the overfitting and local minimum resulted from gradients-based learning, and contrastive divergence (CD) algorithm is used in unsupervised pre-training. Finally, the proposed PLSR-DBN is tested on a benchmark nonlinear system. The experiment results show that the proposed PLSR-DBN has a better performance on nonlinear system identification than other similar methods. © 2017 Technical Committee on Control Theory, CAA.

关键词:

作者机构:

  • [ 1 ] [Gongming, Wang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Gongming, Wang]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Wenjing, Li]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Wenjing, Li]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Junfei, Qiao]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Junfei, Qiao]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 7 ] [Guandi, Wu]Technical Test Center of Shengli Oilfield Branch, Sinopec, Dongying; 257000, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1934-1768

年份: 2017

页码: 10807-10812

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:755/3916077
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司