• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cui, Jixian (Cui, Jixian.) | Lang, Jianlei (Lang, Jianlei.) (学者:郎建垒) | Chen, Tian (Chen, Tian.) | Cheng, Shuiyuan (Cheng, Shuiyuan.) (学者:程水源) | Shen, Zeya (Shen, Zeya.) | Mao, Shushuai (Mao, Shushuai.)

收录:

EI Scopus SCIE

摘要:

Accurate identification of source parameters (source strength and location) of sudden air pollution accidents (SAPAs) is important for implementation of adequate responses. However, the potential impact of atmospheric diffusion conditions on source parameter identification may be significant. An Inversion model that combines the hybrid particle swarm optimization and the Nelder-Mead simplex search method (PSO-NM) with the Gaussian dispersion model was proposed to identify the source parameters and to investigate the influences of different atmospheric conditions on the identifications. A case study based on 68 SO2 leakage tests from the Prairie Grass field experiment was conducted. The source strengths and locations of the 68 tests were estimated by the combined inversion model. The results indicated that the inversion model can effectively get accurate and robust source parameter estimations. The average absolute value of relative deviation of source strength was 13.8% +/- 11.4%; the average absolute deviations for parameters x(0), y(0), z(0) and the total distances were 18.9 +/- 36.9 m, 2.7 +/- 5.2 m, 3.5 +/- 9.7 m and 19.6 +/- 38.1 m, respectively. A comprehensive evaluation method was also proposed for analyzing the impacts of atmospheric conditions on source parameter estimations. The results showed that the source parameter estimations under atmospheric stability classes E and C have the best accuracy and robustness, followed by stability classes A and D; while the worst occurred under atmospheric stability classes B and F. The analysis results can provide scientific support for the formulation or adjustment of emergency response strategies used in sudden air pollution accidents. The new inversion model proposed is a supplement to the methodology of inversing source parameters.

关键词:

Gaussian dispersion model Sudden air pollution Source parameter identification Optimization methods Atmospheric diffusion condition

作者机构:

  • [ 1 ] [Cui, Jixian]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Lang, Jianlei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 3 ] [Chen, Tian]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 4 ] [Cheng, Shuiyuan]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 5 ] [Shen, Zeya]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 6 ] [Mao, Shushuai]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

通讯作者信息:

  • 郎建垒

    [Lang, Jianlei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ATMOSPHERIC ENVIRONMENT

ISSN: 1352-2310

年份: 2019

卷: 205

页码: 19-29

5 . 0 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:123

JCR分区:2

被引次数:

WoS核心集被引频次: 22

SCOPUS被引频次: 25

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:514/4292020
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司