• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dingyuan, Li (Dingyuan, Li.) | Fu, Liu (Fu, Liu.) | Junfei, Qiao (Junfei, Qiao.) (学者:乔俊飞) | Rong, Li (Rong, Li.)

收录:

EI Scopus

摘要:

Echo state network (ESN) is one of the most well-known types of reservoir computing because of its outstanding performance when chaotic time series prediction is conducted. However, sometimes it works poorly because the reservoir connectivity and weight structure are created randomly. To solve this problem, we propose a modified ESN based on contribution rate algorithm. By pruning uninmportant connections without loss of majoy information, the proposed method can not only optimize the network structure, but also improve the generalization performance of network. Experimental results and performance comparisons demonstrate that the modified ESN outperforms the ESN without optimization. © 2017 IEEE.

关键词:

作者机构:

  • [ 1 ] [Dingyuan, Li]College of Communication Engineering, Jilin University, Changchun; 130025, China
  • [ 2 ] [Dingyuan, Li]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Fu, Liu]College of Communication Engineering, Jilin University, Changchun; 130025, China
  • [ 4 ] [Junfei, Qiao]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Rong, Li]Department of Information Technology, Beijing Vocational College of Agriculture, Beijing; 102442, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2017

页码: 4350-4353

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:579/3901896
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司