• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yu, Nan (Yu, Nan.) | Wang, Pu (Wang, Pu.) | Fang, Liying (Fang, Liying.)

收录:

EI Scopus

摘要:

In this study' a model selection procedure for varying-coefficient model based on longitudinal data is proposed to distinguish three types of variables: variables not in the model' variables in the model with time-independent coefficients and variables in the model with time-varying coefficients. To identify these three kinds of variables simultaneously' we extend the present variable selection method from cross-sectional data to longitudinal data. This method combines the B-spline function approximation and Adaptive-Lasso penalty to perform variable selection and do nonparametric estimation simultaneously. Validity is illustrated with a set of simulation experiments' and results indicate the proposed variable selection procedure performs well in distinguishing the real type of independent variables. © 2017 Technical Committee on Control Theory, CAA.

关键词:

作者机构:

  • [ 1 ] [Yu, Nan]Ministry of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Yu, Nan]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China
  • [ 3 ] [Yu, Nan]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 4 ] [Yu, Nan]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Wang, Pu]Ministry of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Wang, Pu]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China
  • [ 7 ] [Wang, Pu]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 8 ] [Wang, Pu]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 9 ] [Fang, Liying]Ministry of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 10 ] [Fang, Liying]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China
  • [ 11 ] [Fang, Liying]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 12 ] [Fang, Liying]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1934-1768

年份: 2017

页码: 9651-9658

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:535/3904900
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司