• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Ma (Li, Ma.) (学者:李明爱) | Tao, Zhang (Tao, Zhang.) (学者:张涛)

收录:

EI Scopus

摘要:

To address the lack of health status identification and poor stability problems in the rotating machinery equipment, this paper proposes a new method for health status identification of rolling bearing based on SVM and improved evidence theory. Firstly, in order to reflect the rolling health condition, we use the empirical mode decomposition (EMD) to extract energy value and the original part of the signal statistics constitute characteristic parameters. After that we take them as the input to SVM classifier for the initial classification. Then we construct the basic probability assignment (BPA) by the SVM classification results. Finally, the results of recognition are given based on recursive dynamic combining weight distribution and decision fusion. The experimental results show that this method can effectively identify Rolling health status, which has high recognition accuracy, stability, and broad applicability. © 2016 IEEE.

关键词:

Health Signal processing Sensor data fusion Software engineering Support vector machines Roller bearings Data fusion

作者机构:

  • [ 1 ] [Li, Ma]School of Software Engineering, Beijing University of Technology, Beijing, China
  • [ 2 ] [Tao, Zhang]School of Software Engineering, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2327-0586

年份: 2016

卷: 0

页码: 378-382

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:970/3905365
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司